Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Neuromuscul Disord ; 34: 19-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042739

RESUMO

McArdle disease is an autosomal recessive inherited disease caused by pathogenic variants in the PYGM gene, resulting in virtual absence of the myophosphorylase enzyme in skeletal muscle. Patients experience physical activity intolerance, muscle pain, and muscle fatigue. This study aimed to investigate other fatigue domains with the Multidimensional Fatigue Inventory (MFI-20) along with an investigation of potential contributing factors, including relevant disease and lifestyle-related factors. We conducted a survey in an international cohort of patients with McArdle disease. The survey included questions on demographics and McArdle disease-related symptoms, and the questionnaires: MFI-20, Insomnia Severity Index (ISI), and International Physical Activity Questionnaire Short-Form (IPAQ-SF). One hundred seventy-four responses were included in the data analyses. We found relatively high fatigue scores in all five domains (general fatigue (12.9 ± 2.2), mental fatigue (10.1 ± 4.1), physical fatigue (13.7 ± 4.1), reduced activity (12.1 ± 4.1), and reduced motivation (10.4 ± 3.4)). Fatigue associated with McArdle symptom severity (p < 0.005), lower levels of physical activity (assessed by IPAQ-SF) (p < 0.05), and poor sleep (assessed by ISI) (p < 0.05). These findings call for clinical focus and future research into fatigue, sleep and mental health in patients with McArdle disease.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Humanos , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Glicogênio Fosforilase Muscular/genética , Músculo Esquelético/patologia , Inquéritos e Questionários , Internet
2.
Carbohydr Res ; 528: 108807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37094534

RESUMO

ß-(1,2)-Mannan antigens incorporated into vaccines candidates for immunization studies, showed that antibodies raised against ß-(1,2)-mannotriose antigens can protect against disseminated candidiasis. Until recently, ß-(1,2)- mannans could only be obtained by isolation from microbial cultures, or by lengthy synthetic strategies involving protecting group manipulation. The discovery of two ß-(1,2)-mannoside phosphorylases, Teth514_1788 and Teth514_1789, allowed efficient access to these compounds. In this work, Teth514_1788 was utilised to generate ß-(1,2)-mannan antigens, tri- and tetra-saccharides, decorated with a conjugation tether at the reducing end, suitable to be incorporated on a carrier en-route to novel vaccine candidates, illustrated here by conjugation of the trisaccharide to BSA.


Assuntos
Candidíase , Glicogênio Fosforilase Muscular , Humanos , Mananas , Candidíase/prevenção & controle , Oligossacarídeos , Fosforilases , Vacinas Conjugadas
3.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108695

RESUMO

Ascorbic acid (AsA) is an antioxidant with significant functions in both plants and animals. Despite its importance, there has been limited research on the molecular basis of AsA production in the fruits of Capsicum annuum L. In this study, we used Illumina transcriptome sequencing (RNA-seq) technology to explore the candidate genes involved in AsA biosynthesis in Capsicum annuum L. A total of 8272 differentially expressed genes (DEGs) were identified by the comparative transcriptome analysis. Weighted gene co-expression network analysis identified two co-expressed modules related to the AsA content (purple and light-cyan modules), and eight interested DEGs related to AsA biosynthesis were selected according to gene annotations in the purple and light-cyan modules. Moreover, we found that the gene GDP-L-galactose phosphorylase (GGP) was related to AsA content, and silencing GGP led to a reduction in the AsA content in fruit. These results demonstrated that GGP is an important gene controlling AsA biosynthesis in the fruit of Capsicum annuum L. In addition, we developed capsanthin/capsorubin synthase as the reporter gene for visual analysis of gene function in mature fruit, enabling us to accurately select silenced tissues and analyze the results of silencing. The findings of this study provide the theoretical basis for future research to elucidate AsA biosynthesis in Capsicum annuum L.


Assuntos
Capsicum , Glicogênio Fosforilase Muscular , Ácido Ascórbico/genética , Frutas/genética , Capsicum/genética , Galactose , Fosforilases , Regulação da Expressão Gênica de Plantas
4.
Biochemistry (Mosc) ; 88(1): 1-12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068874

RESUMO

Formation and accumulation of protein aggregates adversely affect intracellular processes in living cells and are negative factors in the production and storage of protein preparations. Chemical chaperones can prevent protein aggregation, but this effect is not universal and depends on the target protein structure and kinetics of its aggregation. We studied the effect of betaine (Bet) and lysine (Lys) on thermal aggregation of muscle glycogen phosphorylase b (Phb) at 48°C (aggregation order, n = 0.5), UV-irradiated Phb (UV-Phb) at 37°C (n = 1), and apo-form of Phb (apo-Phb) at 37°C (n = 2). Using dynamic light scattering, differential scanning calorimetry, and analytical ultracentrifugation, we have shown that Bet protected Phb and apo-Phb from aggregation, but accelerated the aggregation of UV-Phb. At the same time, Lys prevented UV-Phb and apo-Phb aggregation, but increased the rate of Phb aggregation. The mechanisms of chemical chaperone action on the tertiary and quaternary structures and kinetics of thermal aggregation of the target proteins are discussed. Comparison of the effects of chemical chaperones on the proteins with different aggregation kinetics provides more complete information on the mechanism of their action.


Assuntos
Betaína , Glicogênio Fosforilase Muscular , Lisina , Agregados Proteicos , Animais , Coelhos , Cinética , Betaína/metabolismo , Chaperonas Moleculares/metabolismo , Glicogênio Fosforilase Muscular/metabolismo , Estabilidade Proteica , Lisina/metabolismo , Raios Ultravioleta
5.
Int J Biol Macromol ; 237: 124124, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966859

RESUMO

l-Ascorbic acid (AsA) is a potent antioxidant and essential micronutrient for the growth and development of plants and animals. AsA is predominantly synthesized by the Smirnoff-Wheeler (SW) pathway in plants where the GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting step. In the present study, AsA was estimated in twelve banana cultivars, where Nendran carried the highest (17.2 mg/100 g) amount of AsA in ripe fruit pulp. Five GGP genes were identified from the banana genome database, and they were located at chromosome 6 (4 MaGGPs) and chromosome 10 (1 MaGGP). Based on in-silico analysis, three potential MaGGP genes were isolated from the cultivar Nendran and subsequently overexpressed in Arabidopsis thaliana. Significant enhancement in AsA (1.52 to 2.20 fold) level was noted in the leaves of all three MaGGPs overexpressing lines as compared to non-transformed control plants. Among all, MaGGP2 emerged as a potential candidate for AsA biofortification in plants. Further, the complementation assay of Arabidopsis thaliana vtc-5-1 and vtc-5-2 mutants with MaGGP genes overcome the AsA deficiency that showed improved plant growth as compared to non-transformed control plants. This study lends strong affirmation towards development of AsA biofortified plants, particularly the staples that sustain the personages in developing countries.


Assuntos
Arabidopsis , Glicogênio Fosforilase Muscular , Musa , Ácido Ascórbico/metabolismo , Arabidopsis/genética , Galactose/metabolismo , Musa/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430443

RESUMO

McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo V/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicogênio/metabolismo , Tecnologia
7.
Yi Chuan ; 44(11): 1063-1071, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384998

RESUMO

Glycogen storage disease type V is an autosomal recessive genetic disorder caused by muscle glycogen phosphorylase (PYGM) deficiency, which is characterized by exercise intolerance, second wind phenomena and high level of serum creatine kinase. In this study, we reported a Chinese young man with glycogen storage disease type V, with lower extremity weakness after exercise, increased creatine kinase, and slight fat infiltration in the posterior group of thigh muscle by magnetic resonance imaging (MRI). The proband had complex heterozygous PYGM disease-causing mutations, including c.308T>C (p.L103P) variant transmitted from the mother and c.260_261delCT (p.S87Ffs*23) from the father, of which the former was a novel PYGM mutation. This study enriched the PYGM pathogenic gene mutation spectrum, contributed to improve clinicians' understanding of glycogen storage disease type V and provided a reference for further genetic study of the disease.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Humanos , Masculino , Creatina Quinase/genética , Testes Genéticos , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Doença de Depósito de Glicogênio Tipo V/patologia , Mutação
8.
Rev Neurol ; 75(6): 129-136, 2022 09 16.
Artigo em Espanhol | MEDLINE | ID: mdl-36098446

RESUMO

INTRODUCTION: McArdle's disease is caused by a mutation in the PYGM gene, causing a muscle myophosphorylase deficiency, altering the release of glucose-1-P from glycogen. It usually manifests itself in childhood with early and excessive tiredness, myalgias, cramps and contractures or rhabdomyolysis, although it is not usually diagnosed until adulthood. Creatine kinase increases sharply during exercise. Four pediatric patients are presented, the pathophysiology is summarized, and a diagnostic algorithm is proposed. PATIENTS AND METHODS: Ages between 6 and 14 years, the anamnesis, physical examination, biochemistry, elec-tro-myogram, ischemia test and genetic study are described. Muscle biopsy in a single patient. The algorithm was developed from the ischemia test. RESULTS: In the three men, myalgias appeared after finishing each sports session. Phenomenon 'second wind' in one case. Ischemia test without lactate elevation and marked ammonia elevation in all. Only one muscle biopsy with glycogen deposits and absence of myophosphorylase. PYGM gene with homozygous mutations in all. Dietary treatment attenuated their symptoms during aerobic exercises. CONCLUSIONS: The ischemia test was very useful to demonstrate a dysfunction in anaerobic glycolysis. It is worth noting that oral glucose supplementation is very useful in McArdle disease, but is contraindicated in all six defects of anaerobic glycolysis. The algorithm also allows targeting the defect of 20 metabolic or structural myopathies, which are summarized.


TITLE: Enfermedad de McArdle en cuatro pacientes pediátricos. Algoritmo diagnóstico ante una intolerancia al ejercicio.Introducción. La enfermedad de McArdle está causada por una mutación en el gen PYGM y déficit de miofosforilasa muscular, resultando alterada la liberación de glucosa-1-P a partir del glucógeno. Suele manifestarse en la infancia con cansancio precoz y excesivo, mialgias, calambres y contracturas o rabdomiólisis, aunque no suele diagnosticarse hasta la etapa adulta. La creatincinasa se incrementa durante el ejercicio. Se presentan cuatro pacientes pediátricos, se resume la fisiopatología y se propone un algoritmo diagnóstico. Pacientes y métodos. Pacientes con edades entre 6 y 14 años. Se describe la anamnesis, la exploración física, la bioquímica, el electromiograma, el test de isquemia y el estudio genético, con biopsia muscular a un solo paciente. Se elabora un algoritmo a partir del test de isquemia. Resultados. En los tres varones, las mialgias aparecieron tras finalizar cada sesión deportiva, con un fenómeno second wind en un caso. Se apreció un test de isquemia sin elevación del lactato y marcada elevación del amonio en todos, una biopsia muscular con depósitos de glucógeno y ausencia de miofosforilasa, y gen PYGM con mutaciones homocigotas en todos. El tratamiento dietético les atenuó la sintomatología durante los ejercicios aeróbicos. Conclusiones. El test de isquemia resultó muy útil para demostrar una disfunción en la glucólisis anaeróbica. Se destaca que el suplemento oral de glucosa es muy útil para la enfermedad de McArdle, pero está contraindicado en los seis defectos de la glucólisis anaeróbica. El algoritmo también permite orientar el defecto de 20 miopatías metabólicas o estructurales, que se resumen.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Adolescente , Adulto , Algoritmos , Criança , Glucose , Glicogênio/metabolismo , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Masculino
9.
Rev. neurol. (Ed. impr.) ; 75(6): 129-136, Sep 16, 2022. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-209610

RESUMO

Introducción: La enfermedad de McArdle está causada por una mutación en el gen PYGM y déficit de miofosforilasa muscular, resultando alterada la liberación de glucosa-1-P a partir del glucógeno. Suele manifestarse en la infancia con cansancio precoz y excesivo, mialgias, calambres y contracturas o rabdomiólisis, aunque no suele diagnosticarse hasta la etapa adulta. La creatincinasa se incrementa durante el ejercicio. Se presentan cuatro pacientes pediátricos, se resume la fisiopatología y se propone un algoritmo diagnóstico. Pacientes y métodos: Pacientes con edades entre 6 y 14 años. Se describe la anamnesis, la exploración física, la bioquímica, el electromiograma, el test de isquemia y el estudio genético, con biopsia muscular a un solo paciente. Se elabora un algoritmo a partir del test de isquemia. Resultados: En los tres varones, las mialgias aparecieron tras finalizar cada sesión deportiva, con un fenómeno second wind en un caso. Se apreció un test de isquemia sin elevación del lactato y marcada elevación del amonio en todos, una biopsia muscular con depósitos de glucógeno y ausencia de miofosforilasa, y gen PYGM con mutaciones homocigotas en todos. El tratamiento dietético les atenuó la sintomatología durante los ejercicios aeróbicos. Conclusiones: El test de isquemia resultó muy útil para demostrar una disfunción en la glucólisis anaeróbica. Se destaca que el suplemento oral de glucosa es muy útil para la enfermedad de McArdle, pero está contraindicado en los seis defectos de la glucólisis anaeróbica. El algoritmo también permite orientar el defecto de 20 miopatías metabólicas o estructurales, que se resumen.(AU)


INTRODUCTION: McArdle’s disease is caused by a mutation in the PYGM gene, causing a muscle myophosphorylase deficiency, altering the release of glucose-1-P from glycogen. It usually manifests itself in childhood with early and excessive tiredness, myalgias, cramps and contractures or rhabdomyolysis, although it is not usually diagnosed until adulthood. Creatine kinase increases sharply during exercise. Four pediatric patients are presented, the pathophysiology is summarized, and a diagnostic algorithm is proposed. PATIENTS AND METHODS: Ages between 6 and 14 years, the anamnesis, physical examination, biochemistry, elec­tro­myogram, ischemia test and genetic study are described. Muscle biopsy in a single patient. The algorithm was developed from the ischemia test. RESULTS: In the three men, myalgias appeared after finishing each sports session. Phenomenon ‘second wind’ in one case. Ischemia test without lactate elevation and marked ammonia elevation in all. Only one muscle biopsy with glycogen deposits and absence of myophosphorylase. PYGM gene with homozygous mutations in all. Dietary treatment attenuated their symptoms during aerobic exercises. CONCLUSIONS:The ischemia test was very useful to demonstrate a dysfunction in anaerobic glycolysis. It is worth noting that oral glucose supplementation is very useful in McArdle disease, but is contraindicated in all six defects of anaerobic glycolysis. The algorithm also allows targeting the defect of 20 metabolic or structural myopathies, which are summarized.(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Glicogênio Fosforilase Muscular , Exercício Físico , Tolerância ao Exercício , Pacientes Internados , Exame Físico , Avaliação de Sintomas , Cãibra Muscular , Glicogênio/metabolismo , Neurologia , Mialgia , Rabdomiólise , Algoritmos
10.
Eat Weight Disord ; 27(8): 3793-3796, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35871462

RESUMO

BACKGROUND: McArdle disease is an autosomal recessive genetic disorder caused by a deficiency of the glycogen phosphorylase (myophosphorylase) enzyme, which muscles need to break down glycogen into glucose for energy. Symptoms include exercise intolerance, with fatigue, muscle pain, and cramps being manifested during the first few minutes of exercise, which may be accompanied by rhabdomyolysis. CASE PRESENTATION: This case report describes for the first time the clinical features, diagnosis and management of a 20 year-old patient with anorexia nervosa and McArdle disease, documented by means of muscle biopsy. CONCLUSION: Anorexia nervosa and McArdle disease interact in a detrimental bidirectional way. In addition, some laboratory parameter alterations (e.g., elevated values of creatine kinase) commonly attributed to the specific features of eating disorders (e.g., excessive exercising) may delay the diagnosis of metabolic muscle diseases. On the other hand, the coexistence of a chronic disease, such as McArdle disease, whose management requires the adoption of a healthy lifestyle, can help to engage patients in actively addressing their eating disorder.


Assuntos
Anorexia Nervosa , Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Humanos , Adulto Jovem , Adulto , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Músculo Esquelético/metabolismo , Anorexia Nervosa/complicações , Anorexia Nervosa/metabolismo , Glicogênio Fosforilase Muscular/genética , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio/metabolismo
11.
Acta Myol ; 41(1): 37-40, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35465342

RESUMO

McArdle's disease is an autosomal recessive glycogenosis due to mutation in the myophosphorylase gene (PYGM) resulting in a pure myopathy. The clinical onset typically occurs in childhood with cramps, myalgia, and intolerance to physical exercise, although late onset forms are also reported. We describe a case of a 17-year-old male complaining of cramps and myalgia following brief and intense exercise. The patient reported marked improvement in muscle fatigability few minutes after starting aerobic exercise. When he was a child, he had experienced few episodes of vomiting, nausea, and black colored urine following physical activity. Laboratory testings revealed high creatine kinase serum levels. Genetic testings for metabolic myopathies demonstrated a compound heterozygous for two PYGM mutations (p.R570Q and p.K754Nfs*49) allowing the diagnosis of McArdle's disease. To date, 183 mutations in the PYGM gene are listed in Human Gene Mutation Database Professional 2021.2, but this novel compound heterozygosis has never been reported before.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Adolescente , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Masculino , Cãibra Muscular/genética , Mutação , Mialgia
12.
Artigo em Inglês | MEDLINE | ID: mdl-35022222

RESUMO

McArdle disease is a debilitating glycogen storage disease with typical onset in childhood. Here, we describe a former competitive athlete with early adult-onset McArdle disease and a septuagenarian with a history of exercise intolerance since adolescence who was evaluated for proximal muscle weakness. Exome sequencing identified biallelic variants in the PYGM gene for both cases. The former athlete has the common, well-known pathogenic variant p.(Arg50Ter) in trans with a novel missense variant, p.(Asp694Glu). The second individual has a previously described homozygous missense variant, p.(Arg771Gln). Here, we describe the clinical course, enzyme-testing results using muscle tissue, and molecular findings for the individuals and add to the knowledge of the genotypic spectrum of this disorder.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Adolescente , Adulto , Genótipo , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Homozigoto , Humanos , Sequenciamento do Exoma
13.
Int J Biol Macromol ; 203: 406-416, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066023

RESUMO

Chemical chaperones are a class of small molecules, which enhance protein stability, folding, inhibit protein aggregation, and are used for long-term storage of therapeutic proteins. The combined action of chemical chaperones trehalose, betaine and lysine on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b (Phb) has been studied. Dynamic light scattering data indicate that the affinity of trehalose to Phb increased in the presence of betaine or lysine at both stages (stage of nucleation and aggregate growth) of enzyme aggregation at 48 °C, in contrast, the affinity of betaine to the enzyme in the presence of lysine remained practically unchanged. According to differential scanning calorimetry and analytical ultracentrifugation data, the mixture of trehalose and betaine stabilized Phb stronger than either of them in total. Moreover, the destabilizing effect of lysine on the enzyme was almost completely compensated by trehalose and only partially by betaine. The main protective effect of the mixtures of osmolytes and lysine is associated with their influence on the dissociation/denaturation stage, which is the rate-limiting one of Phb aggregation. Thus, a pair of chaperones affects the stability, oligomeric state, and aggregation of Phb differently than individual chaperones.


Assuntos
Glicogênio Fosforilase Muscular , Glicogênio Fosforilase Muscular/química , Chaperonas Moleculares , Músculos/metabolismo , Fosforilase b , Agregados Proteicos , Ultracentrifugação
14.
J Inherit Metab Dis ; 44(6): 1409-1418, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534370

RESUMO

McArdle disease is caused by recessive mutations in PYGM gene. The condition is considered to cause a "pure" muscle phenotype with symptoms including exercise intolerance, inability to perform isometric activities, contracture, and acute rhabdomyolysis leading to acute renal failure. This is a retrospective observational study aiming to describe phenotypic and genotypic features of a large cohort of patients with McArdle disease between 2011 and 2019. Data relating to genotype and phenotype, including frequency of rhabdomyolysis, fixed muscle weakness, gout and comorbidities, inclusive of retinal disease (pattern retinal dystrophy) and thyroid disease, were collected. Data from 197 patients are presented. Seven previously unpublished PYGM mutations are described. Exercise intolerance (100%) and episodic rhabdomyolysis (75.6%) were the most common symptoms. Fixed muscle weakness was present in 82 (41.6%) subjects. Unexpectedly, ptosis was observed in 28 patients (14.2%). Hyperuricaemia was a common finding present in 88 subjects (44.7%), complicated by gout in 25% of cases. Thyroid dysfunction was described in 30 subjects (15.2%), and in 3 cases, papillary thyroid cancer was observed. Pattern retinal dystrophy was detected in 15 out of the 41 subjects that underwent an ophthalmic assessment (36.6%). In addition to fixed muscle weakness, ptosis was a relatively common finding. Surprisingly, dysfunction of thyroid and retinal abnormalities were relatively frequent comorbidities. Further studies are needed to better clarify this association, although our finding may have important implication for patient management.


Assuntos
Genótipo , Doença de Depósito de Glicogênio Tipo V/genética , Fenótipo , Adulto , Feminino , Glicogênio , Glicogênio Fosforilase Muscular/genética , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Mutação , Distrofias Retinianas/patologia , Estudos Retrospectivos , Rabdomiólise/genética , Doenças da Glândula Tireoide/patologia , Reino Unido
16.
Molecules ; 25(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266408

RESUMO

Dysregulation of glycogen phosphorylase, an enzyme involved in glucose homeostasis, may lead to a number of pathological states such as type 2 diabetes and cancer, making it an important molecular target for the development of new forms of pharmaceutical intervention. Based on our previous work on the design and synthesis of 4-arylamino-1-(ß-d-glucopyranosyl)pyrimidin-2-ones, which inhibit the activity of glycogen phosphorylase by binding at its catalytic site, we report herein a general synthesis of 2-substituted-5-(ß-d-glucopyranosyl)pyrimidin-4-ones, a related class of metabolically stable, C-glucosyl-based, analogues. The synthetic development consists of a metallated heterocycle, produced from 5-bromo-2-methylthiouracil, in addition to protected d-gluconolactone, followed by organosilane reduction. The methylthio handle allowed derivatization through hydrolysis, ammonolysis and arylamine substitution, and the new compounds were found to be potent (µM) inhibitors of rabbit muscle glycogen phosphorylase. The results were interpreted with the help of density functional theory calculations and conformational analysis and were compared with previous findings.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Glicogênio Fosforilase Muscular/antagonistas & inibidores , Pirimidinonas/química , Pirimidinonas/síntese química , Animais , Domínio Catalítico , Biologia Computacional , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Glucose/química , Glicogênio Fosforilase Muscular/química , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , Músculo Esquelético/enzimologia , Pirimidinonas/farmacologia , Coelhos
17.
BMC Geriatr ; 20(1): 451, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153458

RESUMO

BACKGROUND: McArdle disease is a myopathy caused by mutations in PYGM gene that is characterized by reduced or absent activity of myophosphorylase. Reports of patients with concomitant McArdle disease and diabetes are scarce. We report a case of a patient with a late diagnosis of McArdle disease and we postulate that symptoms may be related to hypoinsulinemia. CASE PRESENTATION: This report describes the evolution of an elderly diabetic patient with confirmed diagnosis of McArdle's disease based on the absence of myophosphorylase activity in the analysis of muscle biopsy, and a homozygous mutation in the PYGM gene. The variant - Chr11: 64.525 (p. Asn168*fs) has not been previously described. The diagnosis of McArdle disease was confirmed after two episodes of rhabdomyolysis, at 77 and 81 years of age, as the symptoms were, until then, discrete. The "second-wind phenomenon" was not spontaneously reported, but it was confirmed when directly questioned. We postulate that the later episodes of rhabdomyolysis occurred because of a progressive decrease in insulin production with a consequent reduction in the uptake of blood glucose by muscle cells, thus compromising the cellular energy balance. To our knowledge, this is the first report of recurrent rhabdomyolysis in an elderly diabetic patient with genetically proven McArdle disease. Our initial attempt to reduce insulin resistance with metformin and pioglitazone was not effective, possibly because of inadequate insulinemia. However, an improvement was evident after the administration of low doses of intermediate-acting insulin. CONCLUSIONS: In view of the patient's clinical evolution, we suggest the use of medication that reduces insulin resistance for patients with McArdle disease and type 2 diabetes, pre-diabetes or even normoglycemic metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Rabdomiólise , Idoso , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Mutação , Rabdomiólise/complicações , Rabdomiólise/diagnóstico , Rabdomiólise/genética
18.
Int J Biol Macromol ; 165(Pt A): 365-374, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961195

RESUMO

Arginine (Arg) is frequently used in biotechnology and pharmaceutics to stabilize protein preparations. When using charged ions like Arg, it is necessary to take into account their contribution to the increase in ionic strength, in addition to the effect of Arg on particular processes occurring under the conditions of constancy of ionic strength. Here, we examined contribution of ionic strength (0.15 and 0.5 M) to the effects of Arg on denaturation, thermal inactivation and aggregation of skeletal muscle glycogen phosphorylase b (Phb). Dynamic light scattering, analytical ultracentrifugation, differential scanning calorimetry, circular dichroism and enzymatic activity assay were used to assess the effects of Arg at constant ionic strength compared with the effects of ionic strength alone. We found that high ionic strength did not affect the secondary structure of Phb, but changed conformation of the protein. Such a destabilization of the enzyme causes an increase in the initial rate of aggregation and inactivation of Phb thereby affecting its denaturation. Binding of Arg causes additional changes in the protein conformation, weakening the bonds between monomers in the dimer. This causes the dimer to dissociate into monomers, which rapidly aggregate. Thus, Arg acts on these processes much stronger than just ionic strength.


Assuntos
Arginina/química , Glicogênio Fosforilase Muscular/química , Músculo Esquelético/enzimologia , Animais , Estabilidade Enzimática , Coelhos
19.
PLoS One ; 15(7): e0236597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735634

RESUMO

INTRODUCTION: McArdle disease presents clinical and genetic heterogeneity. There is no obvious association between genotype and phenotype. PYGM (muscle glycogen phosphorylase gene) mRNA expression and its association with clinical, morphological, and genetic aspects of the disease as a set have not been studied previously. METHODS: We investigated genetic variation in PYGM considering the number of PTCs (premature termination codon) per sample and compared mRNA expression in skeletal muscle samples from 15 patients with McArdle disease and 16 controls to PTCs number and different aspects of the disease. RESULTS: The main variant found was c.148C>T (PTC-premature termination codon). Patients with two PTCs showed 42% mRNA expression compared to the control group. Most cases showed an inversely proportional relation among PTCs and mRNA expression. Association between mRNA expression and other aspects of the disease showed no statistically significant difference (p> 0.05). DISCUSSION: mRNA expression is not useful as a predictor factor for the prognosis and severity of the disease. Different mechanisms as post-transcriptional events, epigenetics factors or protein function may be involved.


Assuntos
Demografia , Regulação Enzimológica da Expressão Gênica , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/genética , Adulto , Códon sem Sentido/genética , Estudos Transversais , Feminino , Doença de Depósito de Glicogênio Tipo V/epidemiologia , Doença de Depósito de Glicogênio Tipo V/patologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Adulto Jovem
20.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668633

RESUMO

Small heat-shock proteins (sHSPs) are ATP-independent molecular chaperones that interact with partially unfolded proteins, preventing their aberrant aggregation, thereby exhibiting a chaperone-like activity. Dynamics of the quaternary structure plays an important role in the chaperone-like activity of sHSPs. However, relationship between the dynamic structure of sHSPs and their chaperone-like activity remains insufficiently characterized. Many factors (temperature, ions, a target protein, crowding etc.) affect the structure and activity of sHSPs. The least studied is an effect of crowding on sHSPs activity. In this work the chaperone-like activity of HSPB5 was quantitatively characterized by dynamic light scattering using two test systems, namely test systems based on heat-induced aggregation of muscle glycogen phosphorylase b (Phb) at 48 °C and dithiothreitol-induced aggregation of α-lactalbumin at 37 °C. Analytical ultracentrifugation was used to control the oligomeric state of HSPB5 and target proteins. The possible anti-aggregation functioning of suboligomeric forms of HSPB5 is discussed. The effect of crowding on HSPB5 anti-aggregation activity was characterized using Phb as a target protein. The duration of the nucleation stage was shown to decrease with simultaneous increase in the relative rate of aggregation of Phb in the presence of HSPB5 under crowded conditions. Crowding may subtly modulate sHSPs activity.


Assuntos
Cadeia B de alfa-Cristalina/fisiologia , Precipitação Química , Ditiotreitol/farmacologia , Difusão Dinâmica da Luz , Glicogênio Fosforilase Muscular/química , Humanos , Cinética , Lactalbumina/química , Modelos Moleculares , Proibitinas , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Temperatura , Ultracentrifugação , Cadeia B de alfa-Cristalina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...